Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
1.
Cell Res ; 32(4): 375-382, 2022 04.
Статья в английский | MEDLINE | ID: covidwho-1707327

Реферат

Monoclonal antibodies represent important weapons in our arsenal to against the COVID-19 pandemic. However, this potential is severely limited by the time-consuming process of developing effective antibodies and the relative high cost of manufacturing. Herein, we present a rapid and cost-effective lipid nanoparticle (LNP) encapsulated-mRNA platform for in vivo delivery of SARS-CoV-2 neutralization antibodies. Two mRNAs encoding the light and heavy chains of a potent SARS-CoV-2 neutralizing antibody HB27, which is currently being evaluated in clinical trials, were encapsulated into clinical grade LNP formulations (named as mRNA-HB27-LNP). In vivo characterization demonstrated that intravenous administration of mRNA-HB27-LNP in mice resulted in a longer circulating half-life compared with the original HB27 antibody in protein format. More importantly, a single prophylactic administration of mRNA-HB27-LNP provided protection against SARS-CoV-2 challenge in mice at 1, 7 and even 63 days post administration. In a close contact transmission model, prophylactic administration of mRNA-HB27-LNP prevented SARS-CoV-2 infection between hamsters in a dose-dependent manner. Overall, our results demonstrate a superior long-term protection against SARS-CoV-2 conferred by a single administration of this unique mRNA antibody, highlighting the potential of this universal platform for antibody-based disease prevention and therapy against COVID-19 as well as a variety of other infectious diseases.


Тема - темы
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/prevention & control , Cricetinae , Humans , Liposomes , Mice , Nanoparticles , Pandemics/prevention & control , RNA, Messenger/genetics , Spike Glycoprotein, Coronavirus
2.
Signal Transduct Target Ther ; 6(1): 438, 2021 12 24.
Статья в английский | MEDLINE | ID: covidwho-1585880

Реферат

Messenger RNA (mRNA) vaccine technology has shown its power in preventing the ongoing COVID-19 pandemic. Two mRNA vaccines targeting the full-length S protein of SARS-CoV-2 have been authorized for emergency use. Recently, we have developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor-binding domain (RBD) of SARS-CoV-2 (termed ARCoV), which confers complete protection in mouse model. Herein, we further characterized the protection efficacy of ARCoV in nonhuman primates and the long-term stability under normal refrigerator temperature. Intramuscular immunization of two doses of ARCoV elicited robust neutralizing antibodies as well as cellular response against SARS-CoV-2 in cynomolgus macaques. More importantly, ARCoV vaccination in macaques significantly protected animals from acute lung lesions caused by SARS-CoV-2, and viral replication in lungs and secretion in nasal swabs were completely cleared in all animals immunized with low or high doses of ARCoV. No evidence of antibody-dependent enhancement of infection was observed throughout the study. Finally, extensive stability assays showed that ARCoV can be stored at 2-8 °C for at least 6 months without decrease of immunogenicity. All these promising results strongly support the ongoing clinical trial.


Тема - темы
COVID-19 Vaccines/pharmacology , COVID-19/immunology , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , mRNA Vaccines/pharmacology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Humans , Macaca fascicularis , Vero Cells , mRNA Vaccines/immunology
3.
Nat Commun ; 12(1): 897, 2021 02 09.
Статья в английский | MEDLINE | ID: covidwho-1075219

Реферат

The dynamics, duration, and nature of immunity produced during SARS-CoV-2 infection are still unclear. Here, we longitudinally measured virus-neutralising antibody, specific antibodies against the spike (S) protein, receptor-binding domain (RBD), and the nucleoprotein (N) of SARS-CoV-2, as well as T cell responses, in 25 SARS-CoV-2-infected patients up to 121 days post-symptom onset (PSO). All patients seroconvert for IgG against N, S, or RBD, as well as IgM against RBD, and produce neutralising antibodies (NAb) by 14 days PSO, with the peak levels attained by 15-30 days PSO. Anti-SARS-CoV-2 IgG and NAb remain detectable and relatively stable 3-4 months PSO, whereas IgM antibody rapidly decay. Approximately 65% of patients have detectable SARS-CoV-2-specific CD4+ or CD8+ T cell responses 3-4 months PSO. Our results thus provide critical evidence that IgG, NAb, and T cell responses persist in the majority of patients for at least 3-4 months after infection.


Тема - темы
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/physiology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunologic Memory , Interferon-gamma/metabolism , Kinetics , Leukocyte Common Antigens/metabolism , Male , Middle Aged , Phenotype , Receptors, CCR7/metabolism
Критерии поиска